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Rotation schemes and Chebyshev polynomials

Jacek Wesołowski1

Abstract

There is a continuing interplay between mathematics and survey methodology involving
different branches of mathematics, not only probability. This interplay is quite obvious
as regards the first of the two options: probability vs. non-probability sampling, as pro-
posed and discussed in Kalton (2023). There, mathematics is represented by probability and
mathematical statistics. However, sometimes connections between mathematics and sur-
vey methodology are less obvious, yet still crucial and intriguing. In this paper we refer to
such an unexpected relation, namely between rotation sampling and Chebyshev polynomi-
als. This connection, introduced in Kowalski and Wesołowski (2015), proved fundamental
for the derivation of an explicit form of the recursion for the BLUE µ̂t of the mean on each
occasion t in repeated surveys based on a cascade rotation scheme. This general result was
obtained under two basic assumptions: ASSUMPTION I and ASSUMPTION II, expressed
in terms of the Chebyshev polynomials. Moreover, in that paper, it was conjectured that
these two assumptions are always satisfied, so the derived form of recursion is universally
valid. In this paper, we partially confirm this conjecture by showing that ASSUMPTION I
is satisfied for rotation patterns with a single gap of an arbitrary size.

1. Introduction

Existence of connections between survey methodology and mathematics is a trivial 
statement. The most natural ones are triggered by probability sampling, the first option 
in dychotomy between probability and non-probability sampling proposed in the review, 
Kalton (2023), in this issue of SiT. Of course, it involves probability theory and mathemat-
ical statistics on the mathematical side. The title (and the content) of the popular mono-
graph "Model Assisted Sampling Survey" by Särndal, Swensson and Wretman (1992) is 
the best reference to appreciate this connection. Some other areas of mathematics are also 
typically involved in this interplay; as (convex) optimization theory in optimal allocation 
problems, or graph theory in modelling dependence structure in adaptive sampling. The 
second part of Kalton’s dychotomy may open new doors for involvement of mathematics 
in survey methodology. But even within survey methodology based on probability sam-
pling, unexpected and useful connections between the two areas happen. A good example 
is a connection between rotation sampling and Chebyshev polynomials, which we are going 
to explore in this paper.

Rotation of the sample is a standard method used in repeated surveys. It allows not only 
catching the dynamics of the population under study and lower the burden of surveys for 
respondents, but also can be used to improve estimation of parameters at the given occasion
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by proper treatment of observations from the past occasions. Typical examples are the
Labour Force Survey in the EU with the rotation pattern 110011 (also referred to by 2-2-2),
i.e. a unit (group of units) is in a sample for two consecutive occasions, leaves the survey for
next two occassions, then enters the sample for two more consecutive occasions and then
leaves the survey for good, or the Current Population Survey in the US with the rotation
pattern 1111000000001111 (i.e. 4-8-4). Such methodology was proposed in the seminal
paper Patterson (1950), who postulated the recurrence form for the best linear unbiased
estimators (BLUEs) of the mean on each occasion. Patterson considered a model with
exponentially time-dependent correlations for each unit of the population and independence
between units. He assumed that the rotation pattern is such that any unit leaving the sample
cannot return to the survey. In such setting it was proved that for any occasion t the BLUE µ̂t

(based on all past observations) of the current mean µt satisfies the linear one-step recursion
of the form

µ̂t = a1(t)µ̂t−1 + rT
0 (t)X t + rT

1 (t)X t−1, (1)

where X i is the vector of observations at time i = t, t − 1 and the recursion coefficients,
i.e. the number a1(t) and the vectors r0(t), r1(t) were identified in terms of the correlation
coefficient ρ .

The assumption that a unit leaving the sample never returns to the survey was crucial
for derivation of (1). Therefore, it was expected that the first order recursion for the opti-
mal BLUE’s would no longer hold for more general rotation patterns which do not satisfy
Patterson’s condition. A postulated form of the recursion would be of the form

µ̂t = a1(t)µ̂t−1 + . . .+ap(t)µ̂t−p + rT
0 (t)X t + rT

1 (t)X t−1 + . . .+ rT
p (t)X t−p, (2)

where p is a natural number and a1(t), . . . ,ap(t), r0(t), . . . ,rp(t) are numeric and vector co-
efficients. However, such extension posed major difficulties, see, e.g. Yansaneh and Fuller
(1998). Therefore, for years researchers have been mostly focused on sub-optimal estima-
tors. Already Hansen, Hurwitz, Nisselson and Steinberg (1955) proposed an alternative sub-
optimal K-composite estimator, where the optimality was sought under additional assump-
tion of one-step recursion, that is, under assumption that p = 1 in (2). This approach was
further developed in Rao and Graham (1964), Gurney and Daly (1965), Cantwell (1990),
Cantwell and Caldwell (1998), Ciepiela, Gniado, Wesołowski and Wojtyś (2012). Another
approach, based on the so-called regression composite extimator has been proposed and
studied in Bell (2001), Fuller and Rao (2001), Singh, Kennedy and Wu (2001), Kowalczyk
and Juszczak (2018). Different rotation patterns and comparisons of efficiencies of different
methods are presented in McLaren and Steel (2000), and Steel and McLaren (2002,2008).
For a relatively new review see Karna and Nath (2015). Polish experiences with rotation
sampling are described in a review by Kordos (2012). An alternative methodology, which
we do not consider here, is based on time series theory, with random means on subsequent
occasions while here we assume that they are constants depending on t. An overview of the
time series approach to rotation sampling is given e.g. in Binder and Hidiroglou (1988).

The first result going beyond Patterson’s scheme of a rotation pattern without gaps,
i.e. of the form 11...11, was obtained in Kowalski (2009), where it was proved that for
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rotation patterns with arbitrary number of singleton gaps, i.e. of the form 1...101...101...1,
the recursion (2) holds with p = 2 and all coefficients were identified. Moreover, it was
observed in that paper that the coefficients stabilize quickly as t grows, which suggested an
approach to the general case by recursion with coefficients not depending on t, equivalently
for the stationary situation, i.e. the case when t → ∞. Then, the recursion assumes the form

µ̂t = a1µ̂t−1 + . . .+apµ̂t−p + rT
0 X t + rT

1 X t−1 + . . .+ rT
p X t−p, (3)

Under such a setting a general solution for arbitrary rotation pattern was obtained in
Kowalski and Wesołowski (2015) (referred to by KW in the sequel). According to the main
result in KW the recursion depth, p, is the size of the maximal gap in the rotation pattern in-
creased by 1 (therefore it was 1 in the Patterson model, 2 in for rotation patterns with gaps of
size 1) and 3 in the LFS rotation pattern 110011 (the last one settled in Wesołowski (2010)).
The form of the coefficients in (3), as given in KW, is explicit, and rather unexpectedly,
involves the Chebyshev polynomials of the first kind defined by

Tk(x) = cos(k arccosx), k = 0,1, . . .

For a thorough review of Chebyshev polynomials readers are encouraged to consult
Paszkowski (1975). It has to be emphasized that the solution, valid for any cascade rotation
pattern, was obtained in KW under two specific assumptions: ASSUMPTION I concerning
roots of a special polynomial Qp of degree p expressed through Chebyshev polynomials
and ASSUMPTION II concerning full rank of certain matrix S being a function of these
roots. However, in numerous simulations both these ASSUMPTIONs were always satisfied.
Therefore, it was conjectured, see p. 101 of KW, that both ASSUMPTIONs are always
satisfied and the solution obtained is universally valid. The goal of the present paper is
to show that the conjecture holds true, at least partially. Actually, it will be shown that
ASSUMPTION I holds true for rotation patterns with a single gap of arbitrary size. The
rest of the paper is organized as follows. In Section 2, we present the general setting of the
rotation scheme in mathematical language and adjust ASSUMPTIONs I and II to rotation
patterns with a single gap of arbitrary size. In Section 3, we give a short introduction to
Chebyshev polynomials emphasizing tools needed to analyze roots of the polynomial Qp.
In Section 4, we prove the main result which says that ASSUMPTION I is satisified for
rotation patterns with single gap of arbitrary size. Section 5 is devoted to a representation
of Qp as an affine perturbation of a Chebyshev polynomial of a proper degree, which is the
main tool for the proof.

2. General setting and rotation patterns with a single gap of arbitrary
size

Consider a doubly-infinite matrix of random variables (Xi j), i, j ∈ Z such that for any
j ∈ Z

EXi, j = µ j, for all i ∈ Z,
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and, without loss of generality we assume that Var(Xi, j) = 1 for all i, j ∈ Z. The correlation
structure is described by

Corr(Xi, j,Xk,l) = I(k = i)ρ | j−l|, (4)

where 0 < |ρ|< 1.

For natural number N ≥ 2 consider a sequence X j = (X j, j, . . . ,X j+N−1, j), j ∈ Z, of
N-variate random vectors. Note that from (4) it follows that the covariance matrix C =

Cov(X j,X j+1), of dimensions N ×N, has all entries equal zero except the ones just above
the diagonal, which are all equal ρ . Moreover, (4) yields

Cov(X j,Xk) = C|k− j|

and note that C j is a matrix with all entries equal zero except the jth over diagonal with all
entries equal ρ j when j ≤ N −1 and it is a zero matrix when j > N −1.

A rotation pattern is any vector (ε1, . . . ,εN) with 0-1 entries such that ε1 = εN = 1. Let
M = { j ∈ {1, . . . ,N} : ε j = 0}. Then N = n+m, where m = #M is the number of zeros
among the entries and n is the number of ones (note that n≥ 2). Each zero in rotation pattern
results in a "hole" in the sample and the largest set of subsequent zeros determines a gap in
the rotation pattern. Let p−1 denote the dimension of the largest gap in the rotation pattern.

We modify vectors X j into

Y j = (X j+k−1, j, k ∈ {1, . . . ,N}\M), j ∈ Z.

For a given t ∈ Z let µ̂t denote the BLUE of µt based on Y s, s ≤ t.
We study the recurrence formula for the BLUE estimators of the following form

µ̂t = ã1µ̂t−1 + . . .+ ãsµ̂t−s + r̃T
0 Y t + r̃T

1 Y t−1 + . . .+ r̃T
s Y t−s,

for any t ∈ Z, where s, ã1, . . . , ãs ∈ R and r̃0, r̃1, . . . , r̃s ∈ Rm are unknown. The goal is to
find s and to identify remaining parameters in terms of p, ρ and N.

Alternatively, µ̂t can be defined as optimal unbiased linear estimator ∑s≤t wT
s X s, with

additional constraints

ws, j(1− ε j) = 0, j = 1, . . . ,N, s ≤ t, (5)

imposed by the gaps in the rotation pattern. Therefore, the above recursion can be written
in the form

µ̂t = a1µ̂t−1 + . . .asµ̂t−s + rT
0 X t + rT

1 X t−1 + . . .+ rT
s X t−s, (6)

for any t ∈ Z, where a1, . . . ,as ∈ R and r0, r1, . . . ,rs ∈ RN .

Note that (5) forces respective entries of vectors r j ∈ RN , j = 0, . . . ,s, to be equal zero.
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The problem is to prove that the recurrence (6) holds for s = p and to determine scalar
parameters ai, i = 1, . . . , p and vector parameters r j ∈ RN , j = 0,1, . . . , p. As it has been
already mentioned, under two basic assumptions there exist formulas which completely an-
swer this question. The first of these assumptions is concerned with localization of roots of
certain polynomial and the second deals with unique solvability of certain linear system of
equations. There is a strong numerical evidence that these assumptions may be universally
satisfied. However, no proof of this fact has been available until now. It has been theoret-
ically confirmed only for m = 0,1 and any n ≥ 2 and for the rotation pattern 110011 (here
m = 2). In this paper we will show that the first assumption (ASSUMPTION I below) is
satisfied for all rotation patterns with a single gap of arbitrary size m. We do not know how
to prove that the second assumption (ASSUMPTION II below) is satisfied in this case.

From now on we consider only rotation patterns with a single gap of arbitrary size
m ∈ {0,1, . . .}. In the remaining part of this section we will present ASSUMPTIONs I and
II for such rotation patterns only. A reader interested in the general case is encouraged to
look into KW.

Recall that the Chebyshev polynomials of the first kind (Tn) are defined through a three
step recurrence

Tn+1(x) = 2xTn(x)−Tn−1(x), n = 1,2, . . . (7)

and T0(x) = 1, T1(x) = x, that is Tn(cos t) = cos(nt), n = 0,1, . . ..
Consider a polynomial Qp of degree p defined by

Qp(x) = 1−ρ
2 +(N −1)(1+ρ

2 −2ρx)− (1+ρ
2 −2ρx)2 tr

(
Tm(x)R−1

m (ρ)
)
, (8)

where Tm is an m×m symmetric Toeplitz matrix of the Chebyshev polynomials of the form

Tm =


T0 T1 T2 . . . Tm−2 Tm−1

T1 T0 T1 . . . Tm−3 Tm−2
...

...
... · · ·

...
Tm−2 Tm−3 Tm−4 . . . T0 T1

Tm−1 Tm−2 Tm−3 . . . T1 T0

 (9)

and Rm is an m×m invertible constant three-diagonal matrix

Rm =



1+ρ2 −ρ 0 . . . 0 0
−ρ 1+ρ2 −ρ . . . 0 0
0 −ρ 1+ρ2 . . . 0 0
...

...
... · · ·

...
0 0 0 . . . 1+ρ2 −ρ

0 0 0 . . . −ρ 1+ρ2


(10)

ASSUMPTION I: Roots of Qp are distinct and do not belong to [−1,1].
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As mentioned above, our goal is to show that ASSUMPTION I is satisfied. It is done
in the remaining three sections below. In Section 3, we present some basic facts on the
Chebyshev polynomials of the first and second kind we need in the sequel. The proof, given
in Section 4, to large extent is based on a representation of Qp derived in Section 5.

But before we analyze ASSUMPTION I we will introduce also ASSUMPTION II,
which is conjectured to be also satisfied, but we do not know, how to prove it.

Note that Qp is a polynomial of pth degree. If its roots x1, . . . ,xp are simple and are
outside of the interval [−1,1] (which will be proved in the sequel), then there exist unique
d1, . . . ,dp, which can be complex, such that |di|< 1 and 1

2

(
di +d−1

i

)
= xi, i = 1, . . . , p.

For such numbers d1, . . . ,dp define a p2 × p2 matrix

S = S(d1, . . . ,dp) =


G̃(d1) G̃(d2) · · · G̃(dp)

G(d1) 0 · · · 0
0 G(d2) · · · 0
...

...
. . .

...
0 0 · · · G(dp)


where G̃(di) are p× p matrices

G̃(d) = 1
1−ρ2

 (N −1)(1−dρ)+1−ρ2 (1−dρ)1T
h

(1−dρ)1p−1 H̃p−1


with H̃p−1(d) being a (p−1)× (p−1) upper bi-diagonal matrix

H̃p−1(d) =


1 −dρ

. . . . . .
. . . −dρ

1

 .

and G(di) are (p−1)× p matrices

G(d) = 1
1−ρ2 [(1−dρ)(d −ρ)1h, d Hp−1],

with Hp−1 = Hp−1(d) being a (p−1)× (p−1) tri-diagonal matrix

Hp−1(d) =


1+ρ2 −dρ

−ρ/d
. . .

. . .
. . .

. . . −dρ

−ρ/d 1+ρ2

 .
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Here is the second main assumption:

ASSUMPTION II: detS(d1, . . . ,dp) ̸= 0.

Unfortunately, we are unable to prove that it is satisfied in the setting of a single gap of arbitrary
size m. As mentioned above, only the cases of m = 0,1,2 have been settled until now.

When ASSUMPTION I and ASSUMPTION II are satisfied, then Theorem 3.1 proved in KW says
that p = m+ 1 and gives explicit formulas for ai, i = 1, . . . , p, and ri, i = 0,1, . . . , p, in terms of the
d1, . . . ,dp determined through roots of Qp and the solution c of the linear equation Sc = (1,0, ...,0)T .
For details consult KW.

3. Chebyshev polynomials

The Chebyshev polynomials of the second kind (Un)n≥0 are defined through the same three step
recurrence as (Tn)n≥0, that is

Un+1(x) = 2xUn(x)−Un−1(x), n = 1,2, . . . (11)

but the boundary conditions are slightly different: U0(x) = 1 and U1(x) = 2x, that is Un(cos t) =
sin((n+1)t)

sin t , if only sin t ̸= 0.
We will also use two important identities connecting two forms of the Chebyshev polynomials for

any n = 1,2, . . . (in the formulas below we denote U−1 ≡ 0):

T ′
n = nUn−1, (12)

and
T 2

n (x)+(1− x2)U2
n−1(x) = 1. (13)

Moreover, two representations of the Chebyshev polynomials given in Lemma 3.1 (cf. Paszkowski,
1975) below will be very useful.

Lemma 3.1. For any x ̸= 0 and n = 0,1, . . .

Tn(
1
2 (x+ x−1)) = 1

2
(
xn + x−n) (14)

and for x ̸= 0,±1 we have
Un(

1
2 (x+ x−1)) = xn+1−x−(n+1)

x−x−1 . (15)

It is known (cf. Paszkowski, 1975) that

Un(x) = det Vn(x), n = 1,2, . . . , (16)

where Vn(x) is an n×n tridiagonal matrix defined by

Vn(x) =



2 x −1 0 . . . 0 0
−1 2 x −1 . . . 0 0
0 −1 2 x . . . 0 0
...

...
... · · ·

...
0 0 0 . . . 2 x −1
0 0 0 . . . −1 2 x


. (17)



54 J. Wesołowski: Rotation schemes and Chebyshev polynomials

We see that Vn(x) is non-singular for any x ≥ 1. In this case the explicit form of the inverse of
Vn(x) is known. Let A denote the inverse of Vn(x). Then A = [ai, j]i, j∈{1,...,n} is a symmetric matrix
such that

ai, j =
1

Un(x)
Ui−1(x)Un− j(x), 1 ≤ i ≤ j ≤ n. (18)

We will apply the following useful formulae (cf. Paszkowski, 1975)

n

∑
j=1

Tj(x)Un− j(x) = n
2 Un(x), (19)

2 (x− y)
n

∑
j=0

′Tj(x)Un− j(y) = Tn+1(x)−Tn+1(y), (20)

under notation
n

∑
j=s

′b j =
1
2 bs +bs+1 + . . .+bn, n > l.

4. Roots of Qp

In this section we show that ASSUMPTION 1 is satisfied for rotation patterns with a single gap
of an arbitrary size. In the proof we strongly rely on properties of the Chebyshev polynomials and the
representation of Qp in terms of an affine additive perturbation of the Chebyshev polynomial of the
first kind derived in Section 5.

Theorem 4.1. For any p ≥ 1 the polynomial Qp defined by (8), (9) and (10) has exactly one (when p
is odd) or exactly two (when p is even) real roots (i.e. the remaining roots are complex). These roots
are outside of interval [−1,1]. All roots of Qp are simple.

Proof. Note that due to Prop. 5.2

(det Rm)Qp(x) = det Rm (n−2)(1+ρ
2 −2ρx)+2−2ρ

m+1Tm+1(x). (21)

Therefore, the roots of Qp are identical to the roots of polynomial Q̃p defined by

Q̃p(x) = a+bx+Tm+1(x),

where

a=− (det Rm)(n−2)(1+ρ2)+2
2ρm+1 =−rUm(r)(n−2)−ρ

−m−1 and b= (det Rm)(n−2)
ρm =Um(r)(n−2).

Assume that z0 is a multiple root of Q̃p. That is

a+bz0 +Tm+1(z0) = 0. (22)

Moreover, z0 is necessarily a root of derivative of Q̃p. Thus from (12) we get

b+(m+1)Um(z0) = 0. (23)

Combining (22) and (23) through (13) we obtain

(a+bz0)
2 +(1− z2

0)
(

b
m+1

)2
= 1.
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That is, z0 is a solution of the quadratic equation

b2
(

1− 1
(m+1)2

)
x2 +2abx+a2 +

(
b

m+1

)2
−1 = 0. (24)

whose discriminant is

∆ = 4b2
[

a2

(m+1)2 −
(

b2

(m+1)2 −1
) (

1− 1
(m+1)2

)]
.

If b ≤ m+1 clearly ∆ > 0. For b > m+1 note that

a2 =
[(det Rm)(n−2)(1+ρ2)+2]2

4ρ2m+2 >
[(det Rm)(n−2)(1+ρ2)]2

4ρ2m+2 = b2
(

1+ρ2

2ρ

)2
> b2.

Therefore, ∆ > 0 also in this case. Thus, the quadratic equation (24) has only real solutions.
Consequently, Q̃p does not have multiple complex roots.

Note that Q̃p can be written as

Q̃p(x) =− 1
ρm+1 [1+ 1

2 (n−2)(1+ρ
2 −2ρx) det Rm]+Tm+1(x).

Clearly, the expression in brackets is greater or equal 1 for x ∈ [−1,1]. Since the Chebyshev poly-
nomials Tn, n = 1,2, . . ., on [−1,1] assume values in [−1,1] it follows that on [−1,1] the polynomial
Q̃p is either strictly positive (when ρm+1 < 0) or strictly negative (when ρm+1 > 0).

It is well known that

• if m is an even number then: Um is strictly decreasing on (−∞,−1), strictly increasing on (1,∞)

and Um(±1) = m+1;

• if m is an odd number then: Um is strictly increasing on (−∞,−1) and on (1,∞) and Um(±1) =
±(m+1).

Consequently, only the following four cases are possible:

1. If m is even and ρ > 0 then a < −1 and b ≥ 0. Thus, Q̃p (of odd degree) has exactly one real
root x1 > 1. Note that it is simple. The reason for that is that the derivative of Q̃p which equals
b+(m+1)Um(x) is bounded from below by b+(m+1)2 on (1,∞). Therefore, Q̃p cannot have
a multiple real root > 1.

2. If m is even and ρ < 0 then a > 1 and b ≥ 0. Thus, Q̃p (of odd degree) has exactly one real
root x1 <−1. Similarly, as above Q̃′

p(x) = b+(m+1)Um(x)> b+(m+1)2 on (−∞,−1), and
thus Q̃p does not have a multiple root <−1.

3. If m is odd and ρ > 0 then a <−1 and b ≥ 0. Thus, Q̃p (of even degree) has exactly two real
roots: x1 <−1 and x2 > 1. Similarly as above Q̃′

p(x) = b+(m+1)Um(x)> b+(m+1)2 > 0
for x > 1, and thus the root x2 is simple. Note also that the quadratic polynomial (24) is strictly
positive on negative half line, that is Q̃p cannot have negative multiple roots, in particular, the
root x1 is not multiple.

4. If m is odd and ρ < 0 then a <−1 and b ≤ 0. Thus, Q̃p (of even degree) has exactly two real
roots: x1 < −1 and x2 > 1. This time the derivative, Q̃′

p(x) = b+(m+ 1)Um(x) < b− (m+

1)2 < 0 for x < −1, and thus the root x1 is simple. Similarly as above, to check that x2 is
simple, we refer to (24) having the left-hand side strictly positive for x > 0, which means that
there are no multiple positive roots.
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Remark 4.1. Note that from (21) for n = 2 we get (det Rm)Qp(x) = 2− 2ρm+1Tm+1(x). Conse-
quently, to find roots of Qp it suffices to look for solutions of the equation

Tm+1(x) = ρ
−m−1.

For x = 1
2 (d +1/d) we obtain

dm+1 +d−m−1 = 2
ρm+1

and thus for z = dm+1 we get a quadratic equation

z2 −2 z
ρm+1 +1 = 0

with two real solutions
z = 1±

√
1−ρ2(m+1)

ρm+1 .

Therefore
d j = d± exp

[
i 2 jπ

m+1

]
, j = 0,1, . . . ,m,

where

d± =
m+1
√

1±
√

1−ρ2(m+1)

|ρ| .

Note that 0 < d− < 1 < d+.

5. Qp through additive first degree perturbation of Tp

In this section we derive a convenient representation of Qp in terms of Tp with changed terms of
degree zero and one. It is preceded by a simple expression for determinant of Rm involving the second
order Chebyshev polynomial Um.

Lemma 5.1. Let r = 1
2

(
ρ + 1

ρ

)
. For any m = 0,1, . . .

det Rm = ρ
m Um(r), m = 0,1,2, . . . . (25)

Proof. Notice that Rm = ρVm(r), so by (16) we have

det Rm = ρ
m det Vm(r) = ρ

m Um(r).

The proof is complete.

Proposition 5.2.

(1+ρ
2 −2ρx)2 tr

(
Tm(x)R−1

m

)
= (m+1)(1+ρ

2 −2ρx)+1−ρ
2 −2 1−ρm+1Tm+1(x)

det Rm
. (26)

Proof. Denote r = 1
2

(
ρ + 1

ρ

)
. Then, 1+ρ2 −2ρx =−2ρ(x− r).

From Lemma 3.1 it follows that (26) is equivalent to

4ρ
2(x− r)2 tr

(
Tm(x)R−1

m

)
= 2ρ

Um(r)
(Tm+1(x)−Tm+1(r))− 2ρ(m+1)(x− r). (27)
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We see that R−1
m = 1

ρ
A, where A is a symmetric matrix with entries defined by (18). Note that

the symmetric Toeplitz structure of the matrix Tm and the fact that A is symmetric imply

ρ tr
(

Tm(x)R−1
m

)
= 2

m−1

∑
k=0

′ Tk(x)
m−k

∑
i=1

ai,i+k.

We interchange two sums in the above equation. Then we have

ρ tr
(

Tm(x)R−1
m

)
= 2

m

∑
i=1

m−i

∑
k=0

′ Tk(x) ai,i+k

From (18) we get

(ρ Um(r)) tr
(

Tm(x)R−1
m

)
= 2

m

∑
i=1

Ui−1(r)
m−i

∑
k=0

′ Tk(x)Um−i−k(r). (28)

From (20) it follows that

2 (x− r)
m−i

∑
k=0

′ Tk(x)Um−i−k(r) = Tm−i+1(x)−Tm−i+1(r). (29)

This together with (28) gives

(x− r)(ρ Um(r)) tr
(

Tm(x)R−1
m

)
=

m

∑
i=1

Ui−1(r)(Tm−i+1(x)−Tm−i+1(r)),

which can be rewritten as follows

(x− r)(ρ Um(r)) tr
(

Tm(x)R−1
m

)
= S1 −S2, (30)

where

S1 =
m

∑
i=1

Ui−1(r)Tm−i+1(x), S2 =
m

∑
i=1

Ui−1(r)Tm−i+1(r). (31)

From (19) we have

S2 =
m

∑
j=1

Tj(r)Um− j(r) = m
2 Um(r).

Note that (20) implies

2(x− r)S1 = 2(x− r)
m

∑
j=1

Tj(x)Um− j(x) = (Tm+1(x)−Tm+1(r))− (x− r)Um(r).

This together with (30) gives

4(x− r)2(ρ Um(r)) tr
(

Tm(x)R−1
m

)
= 4(x− r)(S1 −S2).

Finally, we obtain

4(x− r)2(ρ Um(r)) tr
(

Tm(x)R−1
m

)
= 2(Tm+1(x)−Tm+1(r))−2(m+1)(x− r)Um(r). (32)

From this (27) follows immediately. The proof of (26) is now complete.
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6. Conclusions

This paper shows, through a particular example, why sampling survey methodology needs math-
ematics and vice versa, how it can be a source of intriguing purely mathematical problems. We
were concerned with a connection between rotation sampling design and the Chebyshev polynomials,
which was used in KW to give a complete description of the recursion for BLUEs of means on every
occasion. The recursion depth was identified through the largest gap in the rotation pattern and the
recursion coefficients in terms of the Chebyshev polynomials depending on correlations for a single
unit. According to the standard Patterson model, these correlations are assumed to be exponential in
time and the same for every unit, with independence between units. The general form of the recurs-
sion was derived in KW under ASSUMPTIONS I and II and expressed in terms of the Chebyshev
polynomials. There is a strong numerical evidence that both the assumptions are not needed for the
recursion to hold true. In this paper, using intrinsic properties of the Chebyshev polynomials of the
first and the second kind, we proved that, at least for rotation designs with one arbitrary large gap,
ASSUMPTION I is always satisfied. However, the problem if ASSUMPTION II is also satisfied,
even in such a simplified rotation pattern, remains a challenging mathematical question.

References

Bell, P., (2001). Comparison of alternative Labour Force Survey estimators. Survey Methodology,
27, pp. 53–63.

Cantwell, P. J., (1990). Variance formulae for the composite estimators in rotation designs. Survey
Methodology, 16, pp. 153–163.

Cantwell, P. J., Caldwell, C. V., (1998). Examining the revisions in monthly retail and wholesale
trade surveys under rotation panel design. Journal of Official Statistics 14, pp. 47–54.
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